Observational constraints on the structure of GRB jets and lessons from GW170817

Paz Beniamini George Washington University

In collaboration with: Ehud Nakar, Maria Petropoulou, Rodolfo Barniol Duran, Dimitrios Giannios

GRB170817 - First confirmed off-axis GRB

Trigger by GW – detection and follow-up of very faint GRB

Superluminal motion

Mooley et al 18

Rapid decline post peak

Image from Alexander et al 18; See also: Pooley et al. 18, Troja et al. 18, Ghirlanda et al. 18

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

- Afterglow dominated by angular profile of E and Γ
- Initial view off-axis. With time inner material with more energy becomes visible.

Light-curve increases as more energetic material contributes

Open question: Prompt emission dominated by angular jet or cocoon?

Cocoon – large energy content beyond the core but inefficient γ-ray production

Gottlieb et al 18

Steep angular profile – dominates energy radiated in y-rays

Kathirgamaraju et al 18

Distributions of energy and Lorentz factor Simulations

Lazzati et al 18

Kathirgamaraju et al 18

1. Energy in X-ray afterglow roughly correlated with prompt γ-rays

Redshift complete sample

 $L_{X,45} = 11 E_{\gamma,52}$ $\sigma_{log(L_X/E_{\gamma})} = 0.51$ at 1 hour

Image from Beniamini, Nava, Piran 16; data from D'Avanzo et al. 12

All Swift GRBs

 $\sigma_{\log(F_{X,\mathrm{peak}}t_{X,\mathrm{peak}}/\Phi_{\gamma})} = 0.59$

Image from Beniamini & Nakar 18

1. Energy in X-ray afterglow roughly correlated with prompt γ-rays

Very limiting for energy and Lorentz factor structures:

- Prompt typically dominated by $E(\theta)$
- Afterglow Dominated by $\Gamma(\theta)$

 $E_{\gamma} \propto E(\theta)$

 $L_{\chi} \propto \frac{E(\theta)}{n} \Gamma(\theta)^{\xi}$

1. Energy in X-ray afterglow roughly correlated with prompt γ-rays Monte Carlo simulations limit allowed models

$$\epsilon(\theta) = \frac{dE}{d\Omega} = \epsilon_0 \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\alpha} & \theta \geqslant \theta_0 \end{cases}$$
$$\Gamma(\theta) = 1 + (\Gamma_0 - 1) \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\beta} & \theta \geqslant \theta_0 \end{cases}$$

Steep structure
with rather
constant Lorentz
factor required

 $\sigma_{\log(E_X/\gamma)}$

2. Mustn't overproduce GRBs below γ-ray luminosity function peak

$$\epsilon(\theta) = \frac{dE}{d\Omega} = \epsilon_0 \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\alpha} & \theta \geqslant \theta_0 \end{cases}$$
$$\Gamma(\theta) = 1 + (\Gamma_0 - 1) \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\beta} & \theta \geqslant \theta_0 \end{cases}$$

Even if all bursts have L_* at core, lower L bursts are overproduced due to bursts detectable off-axis

Combining both constraints:

Steep structure with rather constant Lorentz factor required

3. Even with constant Γ Light-curve evolution extremely peculiar

Even with constant Γ, bursts observable in γ-rays exhibit extended shallow decays / plateaus lasting tens of days

Beniamini & Nakar 18

Unlike any known GRB (barring GRB170817) to date, which decay at least as fast as $t^{-1/2}$

Racusin et al. 16

An alternative possibility: Restrictive y-ray region

$$E_{\gamma} \propto \Theta(\theta_{\gamma} - \theta)$$

If γ-ray efficiency drops strongly beyond core, results consistent with observations – Shock breakout from a cocoon?

$$\Gamma(\theta_{\rm obs}) \gtrsim 50$$

How can we test this?

For GW detected events the cocoon's large thermal energy is observable directly in UV at $10^{2-3}s$ after GRB

t [sec]

However rapid follow-up required

How can we test this? - Future prospects

Monte Carlo simulations of different structure models

- Most GW detected events up to 220Mpc undetectable in γ-rays
- Between 1 (cocoon) and 10 (structured jet) joint detections in next decade
 - The distributions of L_{ν} and θ_{obs} can distinguish between models

Beniamini, Petropoulou, Barniol Duran, Giannios 18

How can we test this? - Future prospects

- Events similar to GRB 170817 will be rare!
- GW detected events
- GW + gamma-ray detected events

110Mpc GW Horizon

220Mpc GW Horizon

Beniamini, Petropoulou, Barniol Duran, Giannios 18

Conclusions

- In IGRBs, if energy drops continuously with latitude, efficient γ -ray production restricted to material with $\Gamma > 50$
- Cocoon cooling emission detectable in UV at $\sim 10^{2-3} s$
- sGRBs: Structured jet vs cocoon distinguished by L_{γ} and θ_{obs} of joint prompt + GW events
- Future events similar to GRB 170817 will be rare

Backup slides

1. Energy in X-ray afterglow roughly correlated with prompt γ-rays Monte Carlo simulations limit allowed models

$$\epsilon(\theta) = \frac{dE}{d\Omega} = \epsilon_0 \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\alpha} & \theta \geqslant \theta_0 \end{cases}$$
$$\Gamma(\theta) = 1 + (\Gamma_0 - 1) \begin{cases} 1 & \theta < \theta_0 \\ \left(\frac{\theta}{\theta_0}\right)^{-\beta} & \theta \geqslant \theta_0 \end{cases}$$

 $-\sigma_{\log(E_X/\gamma)}$

GRB opening angles from jet breaks

X-ray luminosity to y-ray energy ratio

